Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 14(7): e4964, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38618179

RESUMO

Camelina sativa, a Brassicaceae family crop, is used for fodder, human food, and biofuels. Its relatively high resistance to abiotic and biotic stresses, as well as being a climate-resilient oilseed crop, has contributed to its popularity. Camelina's seed yield and oil contents have been improved using various technologies like RNAi and CRISPR/Cas9 genome editing. A stable transformation system for protein localization and other cell autonomous investigations, on the other hand, is tedious and time consuming. This study describes a transient gene expression protocol for Camelina sativa cultivar DH55 leaves using Agrobacterium strain C58C1. The method is suitable for subcellular protein localization and colocalization studies and can be used with both constitutive and chemically induced genes. We report the subcellular localization of the N-terminal ER membrane signal anchor region (1-32 aa) of the At3G28580 gene-encoded protein from Arabidopsis in intact leaves and the expression and localization of other known organelle markers. This method offers a fast and convenient way to study proteins in the commercially important Camelina crop system. Key features • This method is based on the approach of Zhang et al. [1] and has been optimized for bioenergy crop Camelina species. • A constitutive and inducible transient gene expression in the hexaploid species Camelina sativa cultivar DH55. • Requires only 16-18 days to complete with high efficacy. Graphical overview.

2.
Environ Pollut ; 231(Pt 1): 890-898, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28886534

RESUMO

While considerable attention has been given to the measurement of mercury (Hg) and lead (Pb) concentrations and accumulation in detailed peat cores in central Canada, the geographic distribution and density of sampling are generally limited. Here, we use the Ontario Peatland Inventory to examine broad patterns of Hg and Pb concentration with depth, based on 338 peat cores (containing >1500 analyzed samples) from 127 bogs, fens and swamps located in southeastern, northeastern and northwestern sections of Ontario. Overall, Hg concentrations averaged 0.05 µg g-1 and that of Pb averaged 10.8 µg g-1. Maximum values in the top 50 cm of the profiles are 0.08 µg g-1 and 26.2 µg g-1 for Hg and Pb, respectively. The ratio between these values (surface) and the values from below 100 cm (background), where peat likely accumulated before 1850 and industrial activities were limited, are 2.3 and 6.6 for Hg and Pb, respectively. The highest surface:background concentration ratios are generally found in the westernmost part of the province and in the southeast for Hg and around areas that are more heavily populated for Pb. Our results show that a vast amount of Hg and Pb are stored in Ontarian peatlands, although the spatial distribution of these stores varies. The rapid decomposition of peat in a changing climate could release these pollutants to the atmosphere.


Assuntos
Monitoramento Ambiental , Chumbo/análise , Mercúrio/análise , Poluentes do Solo/análise , Solo/química , Atmosfera , Ontário , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...